A new uniaxial strain cell for in-situ scattering measurements

Physical properties of strongly correlated electron materials ultimately depend on the orbital overlaps of the electronic wavefunctions. One of the most direct methods to alter this overlap in a precise manner is uniaxial strain and over the last year we have been working on multiple uniaxial strain experiments.

In summer, we ran the first measurements with a new type of in-situ cell optimized for low angle scattering experiments, such as high-energy X-ray diffraction or small angle neutron scattering (SANS). You can read a highlight on the UZH website about our measurements at PETRA-III synchrotron.

Having learned a lot about the performance, we have spent the last few months improving it and adding new features. It is now packed again and ready to be shipped back to Hamburg for more experiments!

The apparatus in the beamline at DESY on the left and all packed and airborne on the right.