Magnetism in the iron-based spin ladders


The recent discovery of pressure-induced superconductivity in the iron-based spin ladders has added a new flavor to the study of iron-based superconductivity. On one hand, they have a quasi-one-dimensional structure and on the other – they are insulating at ambient conditions. Hence they appear to be more like cuprates than the other iron-based superconductors. Moreover, since these compounds do not require doping, they open an avenue to study the interplay of superconductivity and magnetism without the introduction of any disorder.

The exact nature of the magnetic ground states and their evolution has been a focus of intense studies and recently, through the use of multiple techniques we have answered some of the issues relating to the magnetic and crystal structure of these compounds.

In the case of the sulfur-end compound BaFe2S3, we have resolved the discrepancies of the previously reported anomalous jumps and have provided a consistent picture of the evolution of the magnetism with pressure.
Find out more at Phys. Rev. B 98, 180402(R)

More recently, for the selenium-end compound, BaFe2Se3, a detailed phase diagram shown above was determined. In contrast to the sulfur-end compound, there exists an abrupt structural transition. Nevertheless, the modifications of magnetic ordering temperature and ordered moment size remain smooth throughout the whole pressure range. Even more strikingly, the exotic block magnetism (antiferromagnetically coupled ferromagnetic clusters) remains robust across the transition and is stable in the whole studied pressure range.
Find out more at Phys. Rev. B 100, 214511

The Many Faces of Magnetism of FeSe


The discovery of the iron-based superconductors a decade ago has put a new fire into the research of unconventional superconductivity. Even the simplest compound of the family – FeSe – has opened up a canvas of new scientific discussions.

Recently, we tackled a few problems that were open in this emblematic compound. There are different magnetic and superconducting phases present in the material and the questions on how they compete and transform from one phase into another have been puzzling the community for a long time. Muon spin rotation under high pressures turned out to be the key experimental technique to answer them – it offers the independent measurement of the volume fraction and magnetic moment as a function of a control parameter.

First, we could find a tricritical point in the pressure-temperature phase diagram, where the magnetic ordering phase transition at very high pressures switches from the second-order to the first order.
Find more at Phys. Rev. B 97, 224510.

Second, when looking at the version with the substitution of sulfur for selenium, we found an emergence of a magnetically ordered phase, similar to the case of the pure system but shifted to lower pressures. We could study the complex interplay between the superconductivity and the magnetism, but what we found to be the most surprising was the discovery of an extended dome of long-range magnetic order that spans a pressure range between previously reported separated magnetic phases.
Find more at Phys. Rev. Lett. 123, 147001

SCES 2019 in Okayama


I had a chance to visit the International Conference for Strongly Correlated Electron Systems in Okayama. It featured a really broad spectrum of scientific discussion both at the oral presentations as well as in the lively poster sessions. Throughout the week I had a number of beneficial discussions about systems with strong spin-orbit coupling, Mott transitions, and frustrated magnets. Perhaps the highlight to me was the prominence of the heat transport measurements as a new window to look at exotic excitations in the strongly correlated electron materials and it will be interesting to see where it goes in a few years.

Changing nature of superconductivity in elemental Bismuth


Known since ancient times, elemental Bismuth is a brittle metal, among the most well-characterized materials available. At ambient pressure it becomes superconducting at extremely low temperature of 0.5 mK which makes it extremely difficult to study.

The situation changes radically under pressure. Upon pressure-induced structural transition, the superconducting temperature rises to several Kelvin. Our recent muon work investigates these superconducting phases. At the intermediate pressures, the superconducting phase expels the applied magnetic field showing very clear Meissner effect, whereas the high-pressure phase allows penetration of magnetic field and forms vortices throughout the sample, which can be picked up by the implanted muons. These observations are textbook-like example of the different behavior of the Type-I and Type-II superconductors and the transformation between the two.

Find more on the two different phases in the papers:
Bi-II phase: Phys. Rev. B 99, 174506
Bi-III phase: Phys. Rev. B 98, 140504(R)

Nordic Neutron School in Tartu

With the European spallation source slowly becoming a reality, the Nordic countries are working on building a fresh and energetic neutron user community. As part of that effort, they have been running annual fall schools to introduce master and PhD students to the potential of neutron scattering. This year I joined to give a presentation about using neutrons to learn about the dynamics of solid state systems. It is an excellent initiative and I hope it keeps running for many years to come.


SPS meeting in Lausanne

As the summer was drawing to a close, the annual Swiss Physical Society meeting took place in Lausanne. As usual, it was great to catch up with the local developments and plans.

I’ve presented our results on the many phases one can reach when perturbing different Kitaev materials and had some pleasant discussions on the topic. Most of the action, however was concentrated on the Swiss free electron laser, which has been nearing its completion and is just about to be launched for real measurements – many exciting discoveries to come.

SPS meeting.jpg